• So we've seen one example of this, this idea of walking through all the integers looking for the square root.

    现在计算机速度很快了,我可以把这个数字设的更大点,计算机会去很快的做这个事情。

    麻省理工公开课 - 计算机科学及编程导论课程节选

  • So people from all the different subways and all the different neighborhoods come to Union Square.

    所以四面八方的人们乘各路地铁到这儿来。

    在超市购买的画 - SpeakingMax英语口语达人

  • And what I recognized was first of all, how impoverishing that was spiritually to not be able to bring my faith identity into the public square.

    而我意识到,第一,我们精神上很枯竭,因为我们不能将自己的宗教身份,带入公共场所。

    普林斯顿公开课 - 人性课程节选

  • All right? I mean, I can make money at Harvard Square doing this stuff, right?

    对不对?【鼓掌】我意思是,我可以在哈佛广场,靠做这个赚钱对不对?

    麻省理工公开课 - 计算机科学及编程导论课程节选

  • Well, all this time int on the blackboard I always draw an int as a square.

    嗯,向来,我在黑板上用一个正方形表示一个。

    哈佛公开课 - 计算机科学课程节选

  • And you probably know that Leicester Square is where all the big film premieres happen.

    你可能知道,莱斯特广场是所有电影巨作的首映现场。

    关于莱斯特广场 - SpeakingMax英语口语达人

  • First of all, it's clear from the Pythagoras' theorem that a is the square root of ^2 + ^2.

    首先,根据毕达哥拉斯定理,勾股定理在西方被称为"毕达哥拉斯定理"

    耶鲁公开课 - 基础物理课程节选

  • so Buckingham Palace, Trafalgar Square, all those places are where the tourists always flock

    白金汉宫,特拉法尔加广场,所有这些地方都是游客聚集的地方,

    快乐的休息日下午 - SpeakingMax英语口语达人

  • So if we square sigma 1 s star, we flip the amplitude so it's all positive now, but again we still have this node right in the middle.

    如果我们平方1s星,我们把振幅翻转所以现在都是正的,但同样在中间有个节点。

    麻省理工公开课 - 化学原理课程节选

  • Head all the way down in Embarcadero, you hit Ghirardelli Square,

    穿过英巴卡迪诺海湾大道,可以去吉尔德利广场,

    旧金山的热点 - SpeakingMax英语口语达人

  • Leicester Square, Piccadilly, they're where like all the shows are,

    莱斯特广场,皮卡迪利广场,所有的演出都在那儿,

    伦敦的约会路线 - SpeakingMax英语口语达人

  • And it was all in Trafalgar Square

    整个首映会在特拉法加广场举行的。

    哈利•波特的人气 - SpeakingMax英语口语达人

  • All right. So we have that square root NR.

    好,看看这个NR求平方根方法。

    麻省理工公开课 - 计算机科学及编程导论课程节选

  • All right, this is actually a very old piece of imperative knowledge for computing square roots, it's attributed to Heron of Alexandria, although I believe that the Babylonians are suspected of knowing it beforehand.

    好,这是一个很古老的,关于计算平方根的程序性知识,是亚历山大的海伦提出的,不过我怀疑在那之前,巴比伦人就已经猜想过了。

    麻省理工公开课 - 计算机科学及编程导论课程节选

  • I'm given an integer that's a perfect square, and I want to write a little piece of code that's going to find the square root of it. All right so I'm cheating a little, I know it's a perfect square, somebody's given it to me, we'll come back in a second to generalizing it, so what would the steps be that I'd use to walk through it?

    完美平方数的整数,我想写一段代码来求这个数的平方根,好,我这儿有点儿作弊了,我知道这是一个完美的平方数了,他们给我的,我们后面会讲怎么产生这个数的,那么我想解决这个问题,需要什么步骤呢?

    麻省理工公开课 - 计算机科学及编程导论课程节选

  • I wanted to show you that, so, first thing I'm going to do is say, all right, I know I'm going to need square root in here, so I'm going to, in fact, import math.

    我们可以开始完成这个方法了,我想让你们看到完成这个方法的过程,第一件事情就是,我们在这儿需要一个求平方根的方法,实际上我将引入math包。

    麻省理工公开课 - 计算机科学及编程导论课程节选

  • Every time you see a square bracket, put a paren in. All right?

    每次你看到一个方括弧,你就得在此添加一个圆括弧,明白了吗?

    麻省理工公开课 - 计算机科学及编程导论课程节选

  • So, if we just rearrange this equation, what we find is that z effective is equal to n squared times the ionization energy, IE all over the Rydberg constant and the square root of this.

    我们可以发现有效的z等于n的平凡,乘以电离能除以里德堡常数,这些所有再开方,所以等于n乘以,除以RH整体的平方根。

    麻省理工公开课 - 化学原理课程节选

  • We know it's going around in a circle because if I find the length of this vector, which is the x-square part, plus the y-square part, I just get r square at all times, because sine square plus cosine square is one.

    我们之所以知道它做圆周运动,是因为我求出了这个矢量的模长,也就是 x 的平方加上 y 的平方,我就得到了它在任意时刻的模长平方,因为正弦平方加余弦平方始终等于1

    耶鲁公开课 - 基础物理课程节选

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定