It is proved in this paper that the minimal characterizing number of a matrix is equal to the spectral radius of the corresponding non-negative matrix.
本文对一个矩阵的最小示性数进行了研究,并证明了一个矩阵的最小示性数等于其对应的非负矩阵的谱半径。
Second, a method to determine the stability of transfer matrix , using a sufficient condition based on spectral radius, is discussed.
然后探讨了传递谱半径判据得到人工边界稳定性近似稳定性准则的方法可能存在的问题。
Using matrix theory, we present a sharp upper bound on the spectral radius of digraphs and strongly connected diagraphs.
首先,我们给出一些图的邻接谱半径的一些新的可达上界,并说明这些新结果在一定情形下比已有的结果要好。
We have obtained some sharp upper and lower bounds of the spectral radius of a Q-spectrum, corresponding to the Q-matrix.
通过对Q -阵及其特征值的分析刻划,得到了Q谱谱半径的一些可达上界和可达下界。
We have obtained some sharp upper and lower bounds of the spectral radius of a Q-spectrum, corresponding to the Q-matrix.
通过对Q -阵及其特征值的分析刻划,得到了Q谱谱半径的一些可达上界和可达下界。
应用推荐