Here, we use second-order, temporal - and high-order spatial finite-difference formulations with a staggered grid for discretization of the 3-d elastic wave equations of motion.
采用时间上二阶、空间上高阶近似的交错网格高阶差分公式求解三维弹性波位移-应力方程,并在计算边界处应用基于傍轴近似法得到的三维弹性波方程吸收边界条件。
This article provides the application of the high-order, staggered-grid, finite-difference scheme to model elastic wave propagation in 3-d isotropic media.
本文应用交错网格高阶有限差分方法模拟弹性波在三维各向同性介质中的传播。
The 3-D wave equation prestack depth migration is one of the most important techniques in the structure imaging and the inversion of elastic parameters of complex media.
三维波动方程叠前深度偏移是复杂介质中进行构造成像、弹性参数反演的重要环节。
Besides, the numerical simulation of elastic wave fields for 2-d and 3-d homogeneous cases and the inhomogeneous case are also presented in the study.
同时对二维和三维均匀介质以及二维非均匀介质中的弹性波传播进行了数值模拟。
Besides, the numerical simulation of elastic wave fields for 2-d and 3-d homogeneous cases and the inhomogeneous case are also presented in the study.
同时对二维和三维均匀介质以及二维非均匀介质中的弹性波传播进行了数值模拟。
应用推荐