The monotone horizontal linear complementarity problem is considered in this paper.
考虑了单调的水平线性互补问题。
Objective: To study auxiliary problem method for solving implicit complementarity problems.
目的研究用辅助问题方法求解隐互补问题。
The MAOR iterative algorithm is used to solve an implicit linear complementarity problem with L-matrix.
用MAOR迭代算法求解一类L -矩阵的隐线性互补问题。
As its application, an existence of solution for a new strong vector complementarity problem is established.
作为应用,得到一类新的强向量相辅问题的解。
In this paper, We study American option pricing by using the continuity algorithm for linear complementarity Problem.
本文利用连续性方法,得到了一类半线性椭圆方程第一边值问题在环形域上任向对称正解的存在性。
Based on a semi smooth equations reformulation of the generalized complementarity problem, a new algorithm is presented.
基于广义互补问题的半光滑方程组变形,给出了求解广义互补问题的一种新算法。
The linear complementarity problem was very useful in economics, it was widely used in game theory and mathematical programming.
线性互补问题在经济学、对策论和数学规划领域中有广泛的应用,线性互补问题解的存在性与特殊矩阵密切相关。
We extend P_property in the linear complementarity problem to V_P property in the extended vertical linear complementarity problem.
进一步研究扩展的垂直线性互补问题,即将线性互补问题中的P性质在扩展的垂直线性互补问题中推广为V P性质。
A sufficient condition that the complementarity problem has solution is given in this paper, the proof of existence is constructive.
本文给出互补问题解的存在性的一个充分条件,其证明是构造性的。
In this paper, a smooth merit function is constructed for general linear complementarity problem (GLCP), which possesses fine coercive property.
本文构造了广义线性互补问题的一个光滑价值函数,该函数具有良好的微分性质。
In chapter 2, the generalized nonlinear complementarity problem (GNCP) defined on a polyhedral cone is reformulated as a system of nonlinear equations.
第二章主要是将求解定义在闭凸多面锥上的广义互补问题(GNCP)转化为一个非线性方程组问题。
In convex programming theory, a constrained optimization problem, by KT conditions, is usually converted into a mixed nonlinear complementarity problem.
在凸规划理论中,通过KT条件,往往将约束最优化问题归结为一个混合互补问题来求解。
In the second chapter, we study the existence of generalized complementarity problem by introducing exceptional family, which is a topological method in nature.
在第二部分中,我们引入例外簇的概念来研究广义补问题解的存在性,这种例外簇方法本质上仍是一种拓扑度方法。
Then, using the relation between the order complementarity problem and implicit varational problems, the author gave some new results on implicit varational problems.
同时利用序补问题与隐变分不等式的关系给出了隐变分不等式解的存在性的新条件。
By using a smooth aggregate function to approximate the non-smooth max-type function, nonlinear complementarity problem can be treated as a family of parameterized smooth equations.
利用凝聚函数一致逼近非光滑极大值函数的性质,将非线性互补问题转化为参数化光滑方程组。
We prove that the solution of a nonlinear complementarity problem is exactly the equilibrium point of differential equation system, and prove the asymptotical stability and global convergence.
在一定的条件下我们证明了非线性互补问题的解是该微分方程系统的平衡点,并且证明了该微分方程系统的稳定性和全局收敛性。
By introducing nonlinear complementarity problem function, the original optimization problem is transferred equivalently to a set of nonlinear equations and solved by semi-smooth Newton method.
针对这一优化问题,通过引入非线性互补问题函数,将原优化问题转化为非线性方程组,并采用半光滑牛顿法进行求解。
The generalized nonlinear complementarity problem is the extension of the classical nonlinear complementarity problem. It is very important and useful in industrial and agricultural production.
广义互补问题是互补问题的推广,它在工农业生产等实际问题中有重要的应用。
By using Newton direction and centering direction, we establish a feasible interior point algorithm for monotone linear complementarity problem and show that this method is polynomial in complexity.
利用牛顿方向和中心路径方向,获得了求解单调线性互补问题的一种内点算法,并证明该算法经过多项式次迭代之后收敛到原问题的一个最优解。
This model can be formulated as an equilibrium problem with equilibrium constraints (EPEC) and be solved by a nonlinear complementarity method.
该模型所描述的均衡问题是一个具有均衡约束的均衡问题(EPEC),可用非线性互补方法求解。
The root-cause of urban transportation problem is the non-complementarity of the space arrangement of urban resources.
大都市交通问题的根源在于城市资源空间布局的非互补性。
The root-cause of urban transportation problem is the non-complementarity of the space arrangement of urban resources.
大都市交通问题的根源在于城市资源空间布局的非互补性。
应用推荐