Polar motion is the movement of the rotation axis with respect to the crust.
极移指自转轴相对地壳的运动。
The rotation of the Earth includes precession, nutation, variations of the rotation rate and polar motion.
地球自转运动包括岁差和章动,极移和日长的变化。
Therefore, observation and research of the polar motion can provide information about global geophysical processes.
因而,对极移的观测和研究必然为全球性的地球物理现象提供着信息。
Therefore, the theoretical definition of CIP and its dynamical equation on polar motion and precession-nutation have been given.
由此对CIP轴进行了理论定义,并给出了其极移、岁差和章动的动力学方程。
In chapter 3, the characteristics of the Earth's deformation and perturbation in gravity potential the under tidal gravity and polar motion are presented.
第三章详细论述了弹性地球在引潮力和极移作用下的重力场扰动和形变特征。
On annual time scale, the contributions to X and Y components of polar motion are 16% and 43%, respectively, while on semi annual time scale, the contributions are 9% and 30%.
其中,大气在周年尺度上对极移X分量的贡献为1 6% ,对Y分量的贡献为43% ;在半年尺度上对极移X分量的贡献为9% ,对Y分量的贡献为30 % 。
The complex eigen period period and Q value of the FCN are evaluated based on the resonance observed in the diurnal tidal gravity, the gravity change due to the polar motion is also studied.
根据地球自由核章动在周日重力潮汐观测中的共振效应确定了自由核章动的复本征周期和品质因子Q值,研究了极移重力效应;
The data of polar motion, rotation of the earth and atmospheric excitation function are analysed by the Auto-Regression power spectrum method, and their spectra at low frequency band are obtained.
本文用自回归功率谱方法分析了极移、地球自转和大气激发函数的资料,得到了它们的低频谱。
A new method is proposed to analyse the motion of plane mechanism by means of complex polar coordinates vector method.
提出用复数-极坐标矢量法(简称复矢量法)来分析平面机构的运动。
An analysis is given to the effect of centering error of the mechanical mounting of the master ball in a digital measurement upon the radial motion polar plot of an axis of rotation.
本文主要分析采用数字式测量时,标准测试球的安装偏心对回转轴径向误差运动圆图象的影响。
Radius and orbital velocities can be directly expressed as functions of time or polar angle, which is helpful for designing flight mission and motion trajectory.
这种方法可直接获得向径、轨道速度等参数随时间或极角(绕地心的转动角)的变化,便于分析轨道转移与逃逸运动,有助于飞行使命与运动轨迹的设计。
Radius and orbital velocities can be directly expressed as functions of time or polar angle, which is helpful for designing flight mission and motion trajectory.
这种方法可直接获得向径、轨道速度等参数随时间或极角(绕地心的转动角)的变化,便于分析轨道转移与逃逸运动,有助于飞行使命与运动轨迹的设计。
应用推荐