Estimate for the spectral radius of iterative matrices.
迭代矩阵的谱半径估计。
Conclusion Norm of operator is very important to estimate the spectral radius of operator.
结论算子范数对于估计有界线性算子乘积与和的谱半径是至关重要的。
Using matrix theory, we present a sharp upper bound on the spectral radius of digraphs and strongly connected diagraphs.
首先,我们给出一些图的邻接谱半径的一些新的可达上界,并说明这些新结果在一定情形下比已有的结果要好。
We have obtained some sharp upper and lower bounds of the spectral radius of a Q-spectrum, corresponding to the Q-matrix.
通过对Q -阵及其特征值的分析刻划,得到了Q谱谱半径的一些可达上界和可达下界。
Finally, for the spectral radius of a graph with a cut vertex, we give an inequality concerning the spectral radius of the graph and its subgraphs.
最后,对于有割点的图的谱半径给出一个与子图的谱半径有关的一个不等式。
It is proved in this paper that the minimal characterizing number of a matrix is equal to the spectral radius of the corresponding non-negative matrix.
本文对一个矩阵的最小示性数进行了研究,并证明了一个矩阵的最小示性数等于其对应的非负矩阵的谱半径。
Firstly, we present some sharp upper bounds on the adjacency spectral radius of graphs, and show that these bounds are somewhat better than the known ones.
首先,我们给出一些图的邻接谱半径的一些新的可达上界,并说明这些新结果在一定情形下比已有的结果要好。
For solving the linear system with the iterative method, it is very important to estimate the spectral radius of the iterative matrices and give the convergence analysis.
在用迭代法求解线性方程组时,迭代矩阵的谱半径估计及其收敛性分析是非常重要的。
Second, a method to determine the stability of transfer matrix , using a sufficient condition based on spectral radius, is discussed.
然后探讨了传递谱半径判据得到人工边界稳定性近似稳定性准则的方法可能存在的问题。
They are important theoretical foundation of the study about nonnegative matrices spectral radius.
这些都是研究矩阵谱性质的重要依据。
The spectral resolution of the spectrometer will be seriously deteriorated by radius error which is inevitable in the flat-field holographic concave grating fabrication.
在平场凹面全息光栅的设计制作中,不可避免的存在曲率半径误差,严重影响光栅光谱仪的分辨率。
The spectral resolution of the spectrometer will be seriously deteriorated by radius error which is inevitable in the flat-field holographic concave grating fabrication.
在平场凹面全息光栅的设计制作中,不可避免的存在曲率半径误差,严重影响光栅光谱仪的分辨率。
应用推荐