The steady-state creep strain rate is a power function of deviatoric stress and exponential function of temperature and energy.
稳定蠕变应变率本构方程是作用在盐岩上的应力偏量的幂次函数和能量与温度的指数函数。
The strain energy density function equals the helmholtz.
应变能密度函数等于亥姆霍兹函数。
The plane displacement of hyperelasticity was discussed. Aimed at a complex strain energy density function, a group of hyperelasticity governing equations defined on initial configuration were solved.
针对一种复杂的应变能密度函数形式,在平面位移情况下,对定义在初始构形上的超弹性基本方程进行了直接的解析求解。
The steady state creep strain rate is a power function of deviatoric stress and exponential function of temperature and energy.
稳定蠕变应变率本构方程是作用在盐岩上的应力偏量的幂次函数和能量与温度的指数函数。
Giant magnetostrictive material is a new type of function material with giant strain, great output force, high response speed and strong energy transition efficiency.
超磁致伸缩材料作为一种新型功能材料具有应变大,输出力大,响应速度快,能量转换效率高等特点。
A new strain energy function was used to analyze a rubber wedge contact with a rigid notch.
利用一种新的橡胶材料应变能函数,对橡胶楔体与刚性缺口接触大变形问题进行了分析。
A new strain energy function is used to analyze a rubber wedge contacting with a rigid notch.
利用一种新的橡胶材料应变能函数,对橡胶楔体与刚性缺口接触大变形问题进行了分析。
In this paper, we have discussed two problems:(1) the method of representation of strain energy density function in the stress and strain spaces;
本文主要解决的问题有两点:1、在应力空间和应变空间中表示应变能密度函数的方法;
Based on improved Genetic Alogrothm, a method to optimize the falsework layout of spatial steel structure is present with structure strain energy as object function.
基于遗传算法,以结构的总应变能作为优化目标函数,基于改进的遗传算法,提出了一种用于确定空间钢结构临时支撑体系布置方案的优化算法。
A new strain energy function was used to analyze a rubber wedge contact with a rigid notch. We found the asymptotic equations near wedge tip, and solved the equations with numeric method.
利用一种新的橡胶材料应变能函数,对橡胶楔体与刚性缺口接触大变形问题进行了分析。得到了楔体尖端场的渐近方程,对渐近方程进行了数值分析,得到了尖角附近应力及变形分布。
A new strain energy function was used to analyze a rubber wedge contact with a rigid notch. We found the asymptotic equations near wedge tip, and solved the equations with numeric method.
利用一种新的橡胶材料应变能函数,对橡胶楔体与刚性缺口接触大变形问题进行了分析。得到了楔体尖端场的渐近方程,对渐近方程进行了数值分析,得到了尖角附近应力及变形分布。
应用推荐