Principal Component Analysis
这时就需要借助主成分分析 (principl component nlysis)来概括诸多信息的主要方面。我们希望有一个或几个较好的综合指标来概括信息,而且希望综合指标互相独登时各代表某一方面的性质。
PCA
主成分分析(PCA)是一种用于连续属性的线性代数技术,并且捕获数据的最大变差。奇异值分解是一种线性代数技术,它与PCA有关,并且也用于维规约。
主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。 在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。 主成分分析首先是由K.皮尔森(Karl Pearson)对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。