Kernel density estimation
... random data generation(随机数生成) Kernel density estimation(核密度估计) SVMs(支持向量机) ...
non-parametric kernel density estimation
Kernel density estimation ; KDE
kernel density estimation
kernel density estimation是在概率论中用来估计未知的密度函数,属于非参数检验方法之一,由Rosenblatt (1955)和Emanuel Parzen(1962)提出,又名Parzen窗(Parzen window)。Ruppert和Cline基于数据集密度函数聚类算法提出修订的核密度估计方法。 核密度估计在估计边界区域的时候会出现边界效应。 在单变量核密度估计的基础上,可以建立风险价值的预测模型。通过对核密度估计变异系数的加权处理,可以建立不同的风险价值的预测模型。