Gradient descent
梯度下降法(gradient descent)是求解无约束最优化问题的一种常用方法,有实现简单的优点。梯度下降法是迭代算法,每一步需要求解目标函数的梯度向量。
Gradient Descent Algorithm
通过引入Bagging算法和Ada Boost算法,分别与BRB相结合提出了基于梯度下降法(gradient descent algorithm,GDA)的置信规则库系统的集成学习方法,并分别应用于输油管道检漏、多峰函数的置信规则库训练,将多个BRB子系统集成,提高系统的推理...
gradient descent method
...结构相似度 梯度下降法 交替迭代法 [gap=1007]Keywords : image denoising;structural similarity;gradient descent method;alternative iteration strategy ...
Batch Gradient Descent
...escent(SGD)) 3、小批量梯度下降法(Mini-batch Gradient Descent(MBGD)) 1、批量梯度下降法(Batch Gradient Descent(BGD)): 批量梯度下降法是梯度下降法最原始的形式,它的具体思路是在更新每一参数时都使用所有的样本来进行更新,其数学形式如下...
梯度下降法(英语:Gradient descent)是一个一阶最优化算法。要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点;这个过程则被称为梯度上升法。