中英
maths
/ mæθs /
/ mæθs /
  • 简明
  • 柯林斯
  • n.数学(等于 mathematics)
  • n.(Maths)人名;(瑞典)马茨
  • 初中/CET4/CET6/考研/
  • 网络释义
  • 专业释义
  • 英英释义
  • 1

     数学

    主要科目 数学数学(Maths)是研究数量、结构、变化以及空间模型等概念的一门学科。

  • 2

     数学课

    ... Chinese汉语(语文课) Maths数学课 Science科学课 ...

  • 3

     数学计算

    数学计算(Maths)v0.5,一个可以做复杂的数学计算,如函数,三角函数等。只需直接输入公式即可得到答案。

  • 4

     算术

    ... visit v不雅光,看望,拜访 maths n(英式拼)算术 northeast n西南,西南部 ...

短语
查看更多
  • 双语例句
  • 原声例句
  • 权威例句
  • 1
    The maths exam was a real beast.
    数学考试实在令人憎恶。
    《牛津词典》
  • 2
    Naomi got a distinction in maths.
    娜奥米的数学得了优等。
    《牛津词典》
  • 3
    Pupils are streamed for French and Maths.
    学生上法语和数学课时按能力分成小组。
    《牛津词典》
查看更多
  • 词典短语
  • 同近义词
  • 同根词
  • 词源
  • 百科
  • Maths

    Mathematics (from Greek μάθημα máthēma, “knowledge, study, learning”) is the study of topics such as quantity (numbers), structure, space, and change. There is a range of views among mathematicians and philosophers as to the exact scope and definition of mathematics.Mathematicians seek out patterns and use them to formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proof. When mathematical structures are good models of real phenomena, then mathematical reasoning can provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, and the systematic study of the shapes and motions of physical objects. Practical mathematics has been a human activity for as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry.Rigorous arguments first appeared in Greek mathematics, most notably in Euclid's Elements. Since the pioneering work of Giuseppe Peano (1858–1932), David Hilbert (1862–1943), and others on axiomatic systems in the late 19th century, it has become customary to view mathematical research as establishing truth by rigorous deduction from appropriately chosen axioms and definitions. Mathematics developed at a relatively slow pace until the Renaissance, when mathematical innovations interacting with new scientific discoveries led to a rapid increase in the rate of mathematical discovery that has continued to the present day.Galileo Galilei (1564–1642) said, "The universe cannot be read until we have learned the language and become familiar with the characters in which it is written. It is written in mathematical language, and the letters are triangles, circles and other geometrical figures, without which means it is humanly impossible to comprehend a single word. Without these, one is wandering about in a dark labyrinth." Carl Friedrich Gauss (1777–1855) referred to mathematics as "the Queen of the Sciences". Benjamin Peirce (1809–1880) called mathematics "the science that draws necessary conclusions". David Hilbert said of mathematics: "We are not speaking here of arbitrariness in any sense. Mathematics is not like a game whose tasks are determined by arbitrarily stipulated rules. Rather, it is a conceptual system possessing internal necessity that can only be so and by no means otherwise." Albert Einstein (1879–1955) stated that "as far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not refer to reality." French mathematician Claire Voisin states "There is creative drive in mathematics, it's all about movement trying to express itself." Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, finance and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries, which has led to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered.

查看更多