Planck constant 普朗克常数 ; 卜朗克常数
reduced Planck Constant 约化普朗克常数 ; 约化普良克常数
PLANCK CONSTANT OVER TWO PI 约化普朗克常数
constant de Planck 普朗克常数
planck constant h 普朗克常量
effective Planck constant 等效普朗克常数
Planck k constant 普朗克常数
planck ' s constant 普朗克常量
planck s constant 普朗克常数
n It takes discrete values, multiples of some integer n, and the multiplication factor is the ratio of the Planck constant divided by 2 pi where n takes one, two, three and so on.
这些离散的值乘以整数,乘积因子,是普朗克常数除以2π,其中n可以取1,2,3,等等。
It is the ratio of the Planck constant to its momentum.
那就是普朗克常量,比上它的动量。
Square of the Planck constant times pi mass of the electron.
普朗克常量的平方,乘以π再乘电子的质量。
And the relationship that he put forth is that the momentum is equal to Planck's constant times nu divided by the speed of light, or it's often more useful for us to think about it in terms of wavelength.
爱因斯坦提出的关系式是,动量等于普朗克常数,乘以υ除以光速,或者用波长来表示,通常更容易让我们想明白。
We can make some substitutions here using some of the derivation on the previous board which will give us the Planck constant divided by 2 pi mass of the electron times the Bohr radius.
在这里我们也可以,用我以前在黑板上写过的一些词来取代它,得到的是普朗克常数除以2π电子质量,再乘以波尔半径。
And finally we have Planck's constant here, which we're all familiar with.
最后这个是我们,都很熟悉的普朗克常数。
应用推荐