This method USES kernel density estimation model to construct the approximate density function, and takes hill climbing strategy to extract clustering patterns.
该方法采用核密度估计模型来构造近似密度函数,利用爬山策略来提取聚类模式。
The background samples are chosen by thresholding inter-frame differences, and the Gaussian kernel density estimation is used to estimate the probability density function of background intensity.
通过相隔固定的帧差值阅值化得到背景样本值,并采用高斯核密度估计方法计算背景灰度的概率密度函数。
This paper introduced the selection principle and method about a reasonable kernel function and bandwidth based on the nonparametric kernel density estimation and kernel regression estimation.
本文基于非参数核密度估计与核回归估计的基础上,介绍了合理选取核函数及窗宽的原则和方法。
应用推荐