...研究物质热运动的宏观理论, 以热力学第零定律,第一定律,第二定律和第三定律 这些基本规律为基础 统计力学(statistical mechanics): 研究物质热运动的微 观理论,认为宏观量是微观量的统计平均值.
基于8351个网页-相关网页
外币兑换的数学方法:金融工程师方法MATHEMAT... ... 一阶偏微分方程及其在物理中的应用PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER AND THEIR APPLICATIONS TO PHYSICS 统计力学:中级课程STATISTICAL MECHANICS 统计力学:中级课程STATISTICAL MECHANICS ...
基于18个网页-相关网页
... 统计特性 statistical coil 统计构卷 statistical mechanics 统计理论 Staudinger viscosity index ...
基于1个网页-相关网页
quantum statistical mechanics [量子] 量子统计力学 ; 量子统计
classical statistical mechanics [力] 经典统计力学 ; 古典统计力学 ; 经典统计力学的
non equilibrium statistical mechanics 非平衡统计力学
probabilistic method in statistical mechanics 统计力学中的概率方法
Chemical Statistical Mechanics 化学统计力学
nonequilibrium statistical mechanics [力] 非平衡统计力学
Quantum and statistical mechanics 量子及统计力学
Thermodynamics and Statistical Mechanics 热力学和统计力学 ; 热力学与统计物理
NON-EQUILIBRIUM STATISTICAL MECHANICS 非平衡统计力学排除分子混沌的假设 ; 非平衡统计力学
Systems of the self-driven kind, which are the main focus of this work, cannot be described by equilibrium statistical mechanics in general.
自驱动多粒子系统是我们这篇文章的主要内容,一般情况下不能用平衡态统计力学来描述。
参考来源 - 交通流模型的研究·2,447,543篇论文数据,部分数据来源于NoteExpress
以上来源于: WordNet
N the study of the properties of physical systems as predicted by the statistical behaviour of their constituent particles 统计力学
This is something that you're going to prove in statistical mechanics, and so we're not going to worry about where this comes from.
这是你们要在统计力学中证明的东西,所以我们不用担心这个从何而来。
Especially of statistical mechanics.
尤其是统计力学。
And also start statistical mechanics.
并开始统计力学。
This is something that you're going to prove in statistical mechanics, and so we're not going to worry about where this comes from.
我们会在统计力学中,证明这一结论,现在不需要去,操心这一结论的由来。
You'd learn about statistical mechanics, and how the atomistic concepts rationalize thermodynamics.
你会学到在统计力学中,是如何用原子论的概念,阐释热力学的。
Now, the reason this condition always holds in ordinary mechanics is because you're never, in that case, concerned with a huge statistical population of particles where the disorder among them is an issue.
这个条件在力学中总是成立,这是因为在力学中,我们从来没有关注过大量粒子的统计行为,而对这些系统来说,无序是很重要的。
应用推荐