You know how pressure changes with temperature at constant volume if you know the equation of state.
如果你知道状态方程,知道在体积恒定的时压强如何随着温度变化。
It's a state function, so we're at constant temperature and pressure, and now we want to consider some chemical change or a phase transition or you name it.
这就是态函数,我们处于恒定的温度和压强之下,然后考虑某些化学变化或者相变,或者你想考虑的东西。
The time constant for PNIPAM in the collapsed state is nearly temperature- and concentration-independent.
塌缩状态下PNIPAM的吸附时间常数基本上不依赖于温度和浓度。
And the equation of state, pressure versus volume at constant temperature, is going to have some form, let's just draw it in there like that.
系统的态函数,恒温下压强比体积,变化曲线,就像这样。
It's a state function, so we're at constant temperature and pressure, and now we want to consider some chemical change or a phase transition or you name it.
这就是态函数,我们处于恒定的温度和压强之下,然后考虑某些化学变化或者相变,或者你想考虑的东西。
You know how pressure changes with temperature at constant volume if you know the equation of state.
如果你知道状态方程,知道在体积恒定的时压强如何随着温度变化。
应用推荐