Based on the convex simplex method for nonlinear programming, a sensitivity analysis of consumption coefficient matrix in linear fractional programming is presented.
基于解非线形规划的凸单纯形法,对一类线形分式规划的消耗系数矩阵进行灵敏度分析。
The optimization problem can be solved based on the density-stiffness interpolation scheme and the method of moving asymptotes belonging to sequential convex programming approaches.
采用基于密度刚度插值模型和序列凸规划法中的移动渐近线方法求解优化模型。 通过经典算例验证了本方法的有效性。
In the branch and bound method for solving non-convex programming, the choice of region subdivision directly affects the convergence of the whole algorithm.
在求解非凸规划的分枝定界法中,剖分区间的选取直接影响到整个算法的收敛速度。
应用推荐